博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
统计学习方法:KNN
阅读量:6360 次
发布时间:2019-06-23

本文共 2638 字,大约阅读时间需要 8 分钟。

作者:桂。

时间:2017-04-19  21:20:09

链接: 

声明:欢迎被转载,不过记得注明出处哦~


前言

本文为《统计学习方法》第三章:KNN(k-Nearest Neighbor),主要包括:

  1)KNN原理及代码实现;

  2)K-d tree原理;

内容为自己的学习记录,其中多有借鉴他人的地方,最后一并给出链接。

 

一、KNN原理及代码实现

KNN对应算法流程:

 其实就是在指定准则下,最近的K个决定了自身的类别。

  • LP距离

p=2时为欧式距离(Euclidean distance),p=1为曼哈顿距离(Manhattan distance),p=∞对应最大值。

  • K值选择

K通常选较小的数值,且通过交叉验证来寻优。

试着写了三种距离下的KNN,给出主要代码:

function resultLabel = knn(test,data,labels,k,flag)%%%   test:test database%   data:train database%   labels:train data labels%   flag: distance criteria selection.%     'E':Euclid Distance.%     'M':Manhanttan distance.%     'C':Cosine similarity.%%resultLabel=zeros(1,size(test,1));dats.f=flag;switch flag    case 'C'        Ifg='descend';    otherwise        Ifg='ascend';endfor i=1:size(test,1)    dats.tes=test(i,:);    dats.tra=data;    distanceMat =distmode(dats);    [B , IX] = sort(distanceMat,Ifg);    len = min(k,length(B));    resultLabel(1,i) = mode(labels(IX(1:len)));endend

 dismode.m: 

function distanceMat =distmode(dats)%distance calculation.%%% dats.tra:train database;% dats.tes:test database;% dats.f: distance flag;%%switch dats.f    case 'E'%Euclidean distance        p=2;        datarow = size(dats.tra,1);        diffMat = abs(repmat(dats.tes,[datarow,1]) - dats.tra) ;        distanceMat=(sum(diffMat.^p,2)).^1/p;    case 'M'%Manhanttan distance        p=1;        datarow = size(dats.tra,1);        diffMat = abs(repmat(dats.tes,[datarow,1]) - dats.tra) ;        distanceMat=(sum(diffMat.^p,2)).^1/p;    case 'C'%Cosine similarity        datarow = size(dats.tra,1);        tesMat = repmat(dats.tes,[datarow,1]) ;        diffup=sum(tesMat.*dats.tra,2);        diffdown=sqrt(sum(tesMat.*tesMat,2)).*sqrt(sum(dats.tra.*dats.tra,2));        distanceMat=diffup./diffdown;end

  

二、K-d tree原理

KNN方法对于一个测试数据,需要与所有训练样本比对,再排序寻K个最优,现在换一个思路:如果在比对之前,就按某种规则排序(即构成一个二叉搜索树),这样一来,对于一个新的数据点,只要在前后寻K个最优即可,这样就提高了搜索的效率。

给出构造平衡kd树的算法:

以一个例子分析该思路,给定一个数据集:

对应思路:

步骤一:x(1)的中位数:7,对应数据{7,2};按小于/大于分左右;

步骤二:1mod2+1=2,对x(2)的中位数,对第二层进行划分,左边中位数为5,右边中位数为9,依次划分;

步骤三:2mod2+1=1,对x(1)的第三层进行划分,结束,对应效果图:

为什么KD树可以这么构造?这也容易理解,对于一个数据点(x,y),距离公式为,单单比较x是不够的,如果对x按大小已经切分,下一步怎么做?再按y进行切分,这样距离大小就被细化,查找范围进一步缩小,x切完y切,如果是三维,y切完z再切,对应数学表达就是。 

构造出了Kd tree之后,如何借助它解决kNN问题呢?

给出搜索kd tree的算法:

 给出下图,现有(2,5)这个点,希望找出最近的K=3 个点:

分析步骤:

步骤一:包含(2,5)的叶节点,发现落在(4,7)节点区域内,(4,7)为当前最近点;

步骤二:检查(4,7)对应父节点(5,4)的另一个子节点(2,3),发现距离(2,5)更近,(2,5)记为当前最近点;

步骤三:向上回退到(5,4),此时(5,4)时子节点,其父节点为(7,2),依次类推。

具体如下图所示:

为什么KD树可以这么搜索?对应节点(右图)可以看出搜索按层回溯,对应左图就是先上下搜索,再往右推进。这样理解就比较直观,因为距离是越来越大的。

完成寻最优以后,最简单的办法是删除节点,重复寻最优,当然也可以存储不同结果,在少量样本中挑出K个最优

 同理,对于三维数据,可以依次类推:

给出Kd tree的测试代码的效果图,code对应链接:

参考:

  • 李航《统计学习方法》

转载于:https://www.cnblogs.com/xingshansi/p/6736385.html

你可能感兴趣的文章
Windows Azure Platform Introduction (6) Windows Azure应用程序运行环境
查看>>
Windows Azure VM Role (3) 在VHD中安装Windows Server 2008 R2
查看>>
Windows 8 Platform (三) Windows 8 Developer Preview
查看>>
根据条件用一个表的字段,去更新另一个表的字段
查看>>
thinkphp模板中使用自定义函数
查看>>
TP复习3
查看>>
(Delphi) Using the Disk Cache 使用磁盘缓存
查看>>
用Feature的方式删除SharePoint2010的Page中重复的WebPart
查看>>
递归算法学习系列之三(快速排序)
查看>>
从TdataSet生成OleVariant
查看>>
预告和目录: Wayne Game Solution 0.1 网络游戏大厅 从最基础开始
查看>>
xBIM WeXplorer xViewer的导航,相机、剖切、隐藏 等操作
查看>>
(转)预编译头文件
查看>>
艾伟_转载:浅析IHttpModule和IHttpHandler
查看>>
百万级访问量网站的技术准备工作
查看>>
Gnome Tweak Tool 3.0.5发布
查看>>
杭州鼎家被曝破产:长租公寓过度金融化酿恶果
查看>>
刘慈欣点赞科幻电影《流浪地球》:震撼心灵
查看>>
香港将发展中央儿童数据资料库 研究整合各部门数据
查看>>
安徽凤阳警方打掉一假证团伙 成员多为校长和老师
查看>>